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AS supercomputing systems continue to grow, the performance  
 of applications running on these machines is increasingly 

threatened by hardware faults. On current petascale machines, the 
number of processor cores ranges from hundreds of thousands 
to millions. (A core is the smallest unit of a computer that 
independently performs calculations.) Operating speeds on 
petascale systems can exceed 1 quadrillion (1015) floating-point 
operations per second (flops). By 2020, exascale systems made 
with hundreds of millions of cores will have 1,000 times the 
performance of today’s petascale systems, running calculations at a 
rate of 1 quintillion (1018) flops. 

The large number of components on a supercomputing system 
increases the rate of hardware faults, which can cause applications 
to abort and performance to degrade. More importantly, they 
may corrupt results. To address this problem, computational 
scientists, with funding from the Laboratory Directed Research and 
Development Program, are developing methods to detect faults 
in supercomputers and help systems recover from errors that do 
occur, even on exascale systems.

Bronis de Supinski, who leads the Exascale Computing 
Technologies project in the Laboratory’s Center for Applied 
Scientific Computing, says that the more nodes, components, and 
memory a system has, the greater its error rate will be. For example, 
he says, “If you’re the only person driving down a road, there is a 
small chance you could have an accident. But if you’re surrounded 
by 10,000 other cars, your chances of having an accident rise.” 

It is the same with computer systems. “We tend to think 
of computers as infallible,” says de Supinski, “but physical 
processes—such as cosmic-ray strikes—can change the flow  
of electrons and affect what’s on the memory cell.” 

Computer scientist Greg Bronevetsky adds that a computer  
is a physical device, not an abstract idea. “The projects at  

the Laboratory 
involve such 
complicated physics, no one 
can sit down and write out the calculations 
to solve them,” says Bronevetsky, who received a 
Presidential Early Career Award for Scientists and Engineers in 
2011. “The computer is a faster, much more powerful pencil, but 
like all devices made of parts from different vendors, an interaction 
between various components can lead to undesired outcomes. 
Something as simple as one chip dying—a problem we call a hard-
stop fault—can cause the entire computation to crash.” 

Fault Finding
Hard-stop faults are the most common type of error and can 

stop an entire compute job. They are normally dealt with by 
writing checkpoints, a method in which the entire state of a job 
is saved and stored on a parallel file system. If a failure occurs, 
a program’s state can be rolled back, or restored, from the most 
recent checkpoint, and operation resumed. But writing a single 
checkpoint to a parallel file system can require tens of minutes on 
a supercomputer. “Saving information somewhere else so we can 
bring it back grows expensive,” de Supinski says. “If faults happen 
often, the system spends almost all of its time writing checkpoints 
and rolling back.” 

In addition, storage disk speeds are much slower than  
processor speeds. Their performance has not increased 
significantly over the years, even though processor performance 
has accelerated. Because of this bottleneck, an exascale system 
might spend more time saving and restoring information than 
performing computations.
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recovered 85 percent of the faults that occurred. “We are also 
looking into staggering the times at which checkpoints are written,” 
de Supinski says. “Typically, a job computes for a while and then 
takes a checkpoint. Disk traffic dramatically peaks in bursts because 
many jobs are writing at once. We found that the higher demand 
on the file system—this burst of pounding—makes the system less 
reliable. SCR can help us smooth the input/output traffic.” 

The team extended SCR to use a technique called Remote 
Direct Memory Access, which pulls data off the node without 
involving the processor in data movement. Different nodes can be 
coordinated to schedule their writing to the file system. Moody 
and Livermore scientist Kathryn Mohror then worked with several 
summer students to compress multiple checkpoints into a single 
file and reduce the number of nodes writing to the file system at 
one time. This approach led to more reliable performance.

Flipping a Bit
Another type of hardware error is a soft fault. These faults 

are insidious: Although the job continues to compute, the data 
are corrupted. “For example,” says Bronevetsky, “if a charged 
particle goes through a transistor, it throws off a little piece 
of the computation.” This error is known as “flipping a bit” 
because the binary code is switched from 0 to 1 or 1 to 0. When 
researchers analyzed BlueGene/L, the Laboratory’s 108,000-node 
supercomputer, they found that one data-cache bit flip occurred 
every four hours. “The machines are expensive, and we want them 
to do as much productive work as possible,” Bronevetsky says. “If 
an application that takes a week to run encounters a failure every 
four hours, the odds are that it will never complete.” 

To make applications more tolerant to bit flips, Livermore 
computer scientist and postdoctoral researcher Marc Casas Guix 
adapted the algebraic multigrid (AMG) algorithm, a powerful 
solver of sparse linear equations. AMG solves linear systems at 
multiple levels of granularity. The fine-grained solve steps reduce 
errors that result from inconsistencies between nearby grid cells, 
and the coarse-grained steps reduce inconsistencies between larger 
regions of space. 

Laboratory researchers then flip bits in AMG to determine 
the code regions and data structures that are vulnerable to such 
errors. Based on the consequences, they can choose the most 
appropriate resilience strategy. To guard against hard failures, 
they can checkpoint data, automatically recalculate corrupted data 
structures, or run two copies of the same program simultaneously 
in case one version becomes corrupted. “AMG is good at 
overcoming errors by fixing them locally and iteratively,” says 
Bronevetsky. “In practice, it survives faults well.”

Clusters to the Rescue
When a supercomputer system computes correctly but the run 

time lasts much longer than normal, a performance fault is the 
culprit. Performance faults are challenging to identify because 

To reduce the time a machine requires to write checkpoints, a 
team of Livermore scientists led by Adam Moody developed the 
Scalable Checkpoint/Restart (SCR) approach. The SCR multilevel 
system can store checkpoints to a compute node’s local memory—
its random access or flash memory or even its disk—in addition to 
the parallel file system. Regular checkpoints can be saved quickly 
to local memory and duplicated on other nodes. If one node fails, 
its data can be restored from a duplicate. With this technique, the 
parallel file system is accessed much less frequently. 

SCR stores, or caches, only the most recent checkpoints, 
discarding an older one as each new checkpoint is saved. It can also 
apply a redundancy scheme to the cache and recover checkpoints 
after a failure disables a small portion of the system. SCR proved 
its value when used with the pF3D code, which simulates laser–
plasma interactions in support of the National Ignition Facility. 
In over 5 million node-hours of computation with pF3D, SCR 

The Scalable Checkpoint/Restart (SCR) method improves code 

performance by writing checkpoints to a compute node’s local memory 

rather than to a parallel file system.
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clustering algorithms get slower with large numbers of cores,” says 
Gamblin. “CAPEK doesn’t run much slower on 131,072 cores 
than it does on one. No matter how many cores are in use, it takes 
less than 1 second to run, which is fast enough for online use in 
production.”

Integrated Support for Laboratory Missions
De Supinski acknowledges that other new techniques are 

needed to keep predictive simulations running efficiently on 
exascale supercomputers. But SCR, the modified AMG algorithm, 
and CAPEK are important advances, making applications more 
tolerant of hardware faults. 

“Ensuring the performance of our petascale and future exascale 
systems is critical to the success of many Laboratory missions,” 
says de Supinski. These machines provide the computational 
power researchers need for a wide range of 21st-century efforts, 
from modeling new materials to studying fusion reactions and 
predicting the effects of a changing climate.

—Kris Fury
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they may occur on any of hundreds of thousands of processors in 
a petascale system. A Livermore team led by computer scientist 
Todd Gamblin has developed an automated machine-learning 
technique called CAPEK (Clustering Algorithm with Parallel 
Extended K-Medoids) that can quickly find faulty processors while 
a calculation is running. 

CAPEK uses a fast sampling method that quickly identifies 
groups of processors with similar performance characteristics. This 
analysis gives each processor a general picture of the behavior 
of the system as a whole. “To know what’s abnormal, we must 
first determine what’s normal,” says Gamblin, who first studied 
load imbalance and developed compression techniques while 
collaborating with Livermore scientists on his dissertation. Once 
each processor receives a description of “normal” behavior from 
CAPEK, it can compare this to its own behavior and identify 
itself as either normal or faulty. Isolating the faulty processors 
significantly reduces the cost of analyzing an application’s 
performance. “CAPEK has proven to be a good method for 
determining when node behavior is different or suspicious,” says 
Gamblin. “With that information, we don’t have to examine all the 
nodes, only the ones affected.”

CAPEK is used for many types of analysis including statistical 
trace sampling and scalable detection of performance anomalies. 
Gamblin has worked with de Supinski, Bronevetsky, and 
collaborators at Purdue University to incorporate CAPEK with 
AutomaDeD, which automatically finds performance faults, so the 
tool can be scaled to next-generation systems. “Most traditional 

SCR recovered 85 percent of the faults that occurred in more than 5 million 

node-hours of computation with the pF3D code, which simulates laser–

plasma interactions such as the one shown here.

A clustering algorithm called CAPEK (Clustering Algorithm with Parallel 

Extended K-Medoids) samples performance data from the various 

processors on a supercomputing system and locates small clusters with 

similar characteristics. The clusters quickly reveal outliers whose behavior 

is suspicious.
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